neurosciencestuff
neurosciencestuff:

How studying damage to the prefrontal lobe has helped unlock the brain’s mysteries
Until the last few decades, the frontal lobes of the brain were shrouded in mystery and erroneously thought of as nonessential for normal function—hence the frequent use of lobotomies in the early 20th century to treat psychiatric disorders. Now a review publishing August 28 in the Cell Press journal Neuron highlights groundbreaking studies of patients with brain damage that reveal how distinct areas of the frontal lobes are critical for a person’s ability to learn, multitask, control their emotions, socialize, and make real-life decisions. The findings have helped experts rehabilitate patients experiencing damage to this region of the brain.
Although fairly common, damage to the prefrontal lobes (also called the prefrontal cortex) is often overlooked and undiagnosed because patients do not manifest obvious deficits. For example, patients with prefrontal brain damage do not lose any of their senses and often have preserved motor and language abilities, but they may manifest social abnormalities or difficulties with high-level planning in everyday life situations.
"In this review, we aimed to highlight a blend of new studies using cutting edge research techniques to investigate brain damage, but also to relate these new studies to original studies, some of which were published more than a century ago," said lead author Dr. Sara Szczepanski, of the University of California, Berkeley. "There is currently a large push to better understand the functions of the prefrontal cortex, and we believe that our review will make an important contribution to this understanding."
In addition to revealing the functions of different areas within the prefrontal cortex, studies have also demonstrated the flexibility of the region, which has helped experts optimize cognitive therapy techniques to enable patients with brain damage to learn new skills and compensate for their impairments.
The review indicates that by studying patients with damage to the prefrontal cortex, investigators can gain insights into this still-mysterious region of the brain that is critical for complex human skills and behavior.

neurosciencestuff:

How studying damage to the prefrontal lobe has helped unlock the brain’s mysteries

Until the last few decades, the frontal lobes of the brain were shrouded in mystery and erroneously thought of as nonessential for normal function—hence the frequent use of lobotomies in the early 20th century to treat psychiatric disorders. Now a review publishing August 28 in the Cell Press journal Neuron highlights groundbreaking studies of patients with brain damage that reveal how distinct areas of the frontal lobes are critical for a person’s ability to learn, multitask, control their emotions, socialize, and make real-life decisions. The findings have helped experts rehabilitate patients experiencing damage to this region of the brain.

Although fairly common, damage to the prefrontal lobes (also called the prefrontal cortex) is often overlooked and undiagnosed because patients do not manifest obvious deficits. For example, patients with prefrontal brain damage do not lose any of their senses and often have preserved motor and language abilities, but they may manifest social abnormalities or difficulties with high-level planning in everyday life situations.

"In this review, we aimed to highlight a blend of new studies using cutting edge research techniques to investigate brain damage, but also to relate these new studies to original studies, some of which were published more than a century ago," said lead author Dr. Sara Szczepanski, of the University of California, Berkeley. "There is currently a large push to better understand the functions of the prefrontal cortex, and we believe that our review will make an important contribution to this understanding."

In addition to revealing the functions of different areas within the prefrontal cortex, studies have also demonstrated the flexibility of the region, which has helped experts optimize cognitive therapy techniques to enable patients with brain damage to learn new skills and compensate for their impairments.

The review indicates that by studying patients with damage to the prefrontal cortex, investigators can gain insights into this still-mysterious region of the brain that is critical for complex human skills and behavior.

scienceyoucanlove
compoundchem:

This year’s Longitude Prize is focused on the growing problem of antibiotic resistant bacteria. They’ve put together a nice image, shown here, which showcases what they term ‘the ten most dangerous antibiotic resistant bacteria’. You can read more detail on each of them here:http://www.nesta.org.uk/news/antibiotic-resistant-bacteriaThe prize offers a £10 million prize fund for the development of a cheap, accurate, and easy to use bacterial infection test kit, which will allow doctors to prescribe the correct antibiotics at the correct time for patients, to try to help minimise the development of antibiotic resistance.

compoundchem:

This year’s Longitude Prize is focused on the growing problem of antibiotic resistant bacteria. They’ve put together a nice image, shown here, which showcases what they term ‘the ten most dangerous antibiotic resistant bacteria’. You can read more detail on each of them here:http://www.nesta.org.uk/news/antibiotic-resistant-bacteria

The prize offers a £10 million prize fund for the development of a cheap, accurate, and easy to use bacterial infection test kit, which will allow doctors to prescribe the correct antibiotics at the correct time for patients, to try to help minimise the development of antibiotic resistance.

science-junkie
science-junkie:

Parasitic Plant Strangleweed Injects Host With Thousands Of Its Own Expressed Genes
Virginia Tech professor and Fralin Life Institute affiliate Jim Westwood has made a discovery about plant-to-plant communication: enormous amounts of genetic messages in the form of mRNA transcripts are transmitted from the parasitic plant Cuscuta (known more commonly as dodder and strangleweed) to its hosts.
Using Illumina next generation sequencing technologies to sequence the tissues of the host and an attached parasite, the team found that the number of genes that gets passed into the host depends on the identity of the host.  The tomato plant received 347 of the strangleweed’s mRNAs, whereas the Arabidopsis received an astonishing 9514 mRNAs.  When Arabidopsis plant receives this many mRNAs, the total genetic material of tissues in contact with the strangleweed is about 45% from the parasite.
Read more

science-junkie:

Parasitic Plant Strangleweed Injects Host With Thousands Of Its Own Expressed Genes

Virginia Tech professor and Fralin Life Institute affiliate Jim Westwood has made a discovery about plant-to-plant communication: enormous amounts of genetic messages in the form of mRNA transcripts are transmitted from the parasitic plant Cuscuta (known more commonly as dodder and strangleweed) to its hosts.

Using Illumina next generation sequencing technologies to sequence the tissues of the host and an attached parasite, the team found that the number of genes that gets passed into the host depends on the identity of the host.  The tomato plant received 347 of the strangleweed’s mRNAs, whereas the Arabidopsis received an astonishing 9514 mRNAs.  When Arabidopsis plant receives this many mRNAs, the total genetic material of tissues in contact with the strangleweed is about 45% from the parasite.

Read more

scienceyoucanlove
scienceyoucanlove:


Hydnellum peckii is an inedible fungus, and a member of the genus Hydnellum of the family Bankeraceae. It is a hydnoid species, producing spores on the surface of vertical spines or tooth-like projections that hang from the undersurface of the fruit bodies. It is found in North America, Europe, and was recently discovered in Iran (2008) and Korea (2010). Hydnellum peckii is a mycorrhizal species, and forms mutually beneficial relationships with a variety of coniferous trees, growing on the ground singly, scattered, or in fused masses.The fruit bodies typically have a funnel-shaped cap with a white edge, although the shape can be highly variable. Young, moist fruit bodies can “bleed” a bright red juice that contains a pigment known to have anticoagulant properties similar to heparin. The unusual appearance of the young fruit bodies has earned the species several descriptive common names, including strawberries and cream, the bleeding Hydnellum, the bleeding tooth fungus, the red-juice tooth, and the Devil’s tooth. Although Hydnellum peckii fruit bodies are readily identifiable when young, they become brown and nondescript when they age.The species was first described scientifically by American mycologist Howard James Banker in 1913. Italian Pier Andrea Saccardo placed the species in the genus Hydnum in 1925, while Walter Henry Snell and Esther Amelia Dick placed it in Calodon in 1956; Hydnum peckii (Banker) Sacc. and Calodon peckii Snell & E.A. Dick are synonyms of Hydnellum peckii.The fungus is classified in the stirps (species thought to be descendants of a common ancestor) Diabolum of the genus Hydnellum, a grouping of similar species with the following shared characteristics: flesh that is marked with concentric lines that form alternating pale and darker zones (zonate); an extremely peppery taste; a sweetish odor; spores that are ellipsoid, and not amyloid (that is, not absorbing iodine when stained with Melzer’s reagent), acyanophilous (not staining with the reagent Cotton Blue), and covered with tubercules; the presence of clamp connections in the hyphae. Molecular analysis based on the sequences of the internal transcribed spacer DNA of several Hydnellum species placed H. peckii as most closely related to H. ferrugineum and H. spongiosipes.The specific epithet honors mycologist Charles Horton Peck. The fungus is known in the vernacular by several names, including “strawberries and cream”, the “bleeding Hydnellum”, the “red-juice tooth”, “Peck’s hydnum”, the “bleeding tooth fungus”, and the “devil’s tooth”.









Gefällt mir
photo and text from Rare Plants

scienceyoucanlove:

Hydnellum peckii is an inedible fungus, and a member of the genus Hydnellum of the family Bankeraceae. It is a hydnoid species, producing spores on the surface of vertical spines or tooth-like projections that hang from the undersurface of the fruit bodies. It is found in North America, Europe, and was recently discovered in Iran (2008) and Korea (2010). Hydnellum peckii is a mycorrhizal species, and forms mutually beneficial relationships with a variety of coniferous trees, growing on the ground singly, scattered, or in fused masses.
The fruit bodies typically have a funnel-shaped cap with a white edge, although the shape can be highly variable. Young, moist fruit bodies can “bleed” a bright red juice that contains a pigment known to have anticoagulant properties similar to heparin. The unusual appearance of the young fruit bodies has earned the species several descriptive common names, including strawberries and cream, the bleeding Hydnellum, the bleeding tooth fungus, the red-juice tooth, and the Devil’s tooth. Although Hydnellum peckii fruit bodies are readily identifiable when young, they become brown and nondescript when they age.
The species was first described scientifically by American mycologist Howard James Banker in 1913. Italian Pier Andrea Saccardo placed the species in the genus Hydnum in 1925, while Walter Henry Snell and Esther Amelia Dick placed it in Calodon in 1956; Hydnum peckii (Banker) Sacc. and Calodon peckii Snell & E.A. Dick are synonyms of Hydnellum peckii.
The fungus is classified in the stirps (species thought to be descendants of a common ancestor) Diabolum of the genus Hydnellum, a grouping of similar species with the following shared characteristics: flesh that is marked with concentric lines that form alternating pale and darker zones (zonate); an extremely peppery taste; a sweetish odor; spores that are ellipsoid, and not amyloid (that is, not absorbing iodine when stained with Melzer’s reagent), acyanophilous (not staining with the reagent Cotton Blue), and covered with tubercules; the presence of clamp connections in the hyphae. Molecular analysis based on the sequences of the internal transcribed spacer DNA of several Hydnellum species placed H. peckii as most closely related to H. ferrugineum and H. spongiosipes.
The specific epithet honors mycologist Charles Horton Peck. The fungus is known in the vernacular by several names, including “strawberries and cream”, the “bleeding Hydnellum”, the “red-juice tooth”, “Peck’s hydnum”, the “bleeding tooth fungus”, and the “devil’s tooth”.
Gefällt mir

photo and text from Rare Plants

thenewenlightenmentage
thedemon-hauntedworld:

IC443 - IC444. The Jellyfish Nebula, Supernova Remnant in Gemini
The Jellyfish nebula (IC443) in Gemini is a supernova remnant that is from 8000 years ago (3.000 - 30.000). Although it shares some characteristics with other supernova remnants like the Crab nebula, in this case, the gas threads do hot show a regular outward expansion. The nebular area on the bottom of the image is IC444. The more prominent stars are Mu and Eta Geminorum.
Credit: Antonio Perez Astronomia

thedemon-hauntedworld:

IC443 - IC444. The Jellyfish Nebula, Supernova Remnant in Gemini

The Jellyfish nebula (IC443) in Gemini is a supernova remnant that is from 8000 years ago (3.000 - 30.000). Although it shares some characteristics with other supernova remnants like the Crab nebula, in this case, the gas threads do hot show a regular outward expansion. The nebular area on the bottom of the image is IC444. The more prominent stars are Mu and Eta Geminorum.

Credit: Antonio Perez Astronomia